
Journal of Statistical Physics, Vol. 100, Nos. 5�6, 2000

Exact Determination of the Phase Structure of a
Multi-Species Asymmetric Exclusion Process
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We consider a multi-species generalization of the Asymmetric Simple Exclusion
Process on an open chain, in which particles hop with their characteristic hopping
rates and fast particles can overtake slow ones. The number of species is arbitrary
and the hopping rates can be selected from a discrete or continuous distribution.
We determine exactly the phase structure of this model and show how the phase
diagram of the 1-species ASEP is modified. Depending on the distribution of
hopping rates, the system can exist in a three-phase regime or a two-phase
regime. In the three-phase regime the phase structure is almost the same as in
the one species case, that is, there are the low density, the high density and the
maximal current phases, while in the two-phase regime there is no high-density
phase.

KEY WORDS: Asymmetric exclusion process; matrix product ansatz; phase
transition.

1. INTRODUCTION

The asymmetric simple exclusion process(1�6) refers to a collection of
Brownian particles which under the influence of a driving force, do biased
random hopping on a one dimensional lattice and interact via hard core
repulsion with each other. In the totally asymmetric case each particle is
injected to the system from the left with rate : and hops only to the right
neighboring site with a rate normalized to unity and finally is extracted at
the right end with rate ;.
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This is a model far from equilibrium with many re-interpretations
which makes it a suitable model for studying such phenomena as diverse
as surface growth,(7) and traffic flow,(8, 9) (see refs. 10, 11, 6, 12 and references
therein.)

One of the most interesting aspects of this process is the possibility of
boundary induced phase transitions. It has been observed through various
types of solutions(13�17) that by changing the rate of injection and extrac-
tion of particles, different phases will develop in the system. The phase
diagram of the model representing the macroscopic current of the particles
in various domains in the :&; plane is depicted in Fig. 1.

Although some of the characteristics of the process have been obtained
by other analytical methods, (15, 16, 18) the solution by Matrix Product Ansatz
(MPA)(17) has proved much useful for obtaining among other things, the

Fig. 1. Phase diagram for the single species ASEP.
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same results in much simpler ways. The general formulation of MPA(19) has
also been shown to be amenable to further generalizations.(20�28)

In the MPA the probabilities P({1 } } } {L), where {i is the random
variable associated with site i (being 0 for empty site and 1 for an occupied
site), is written as:

P({1 ,..., {L)=
1

ZL
(W | `

L

i=1

({i D+(1&{i ) E |V ) (1)

where the operators D and E, and the vectors (W | and |V ) satisfy the
following relations:

DE=D+E (2)

D |V ) =
1
;

|V ) (3)

(W | E=
1
:

(W | (4)

In (1), ZL is a normalization constant and is suitably called the partition
function. Its value is given by

ZL=(W | CL |V ) (5)

where C :=D+E.
The question of a natural p-species generalization of the ASEP, so that

in the special case p=1, one obtains the results of the one species
ASEP, (21) has been answered in the affirmative in refs. 22 and 23, by
postulating a generalization of the algebra (2-4), which we call the p-ASEP
algebra. Since the number of species is quite arbitrary and it can even be
infinite, in which case the hopping rates are taken from a continuous dis-
tribution, we rewrite the multi-species algebra in a more general form than
that of ref. 22. This new algebra is generated by a discrete generator E and
a one parameter family of generators D(v) where v # R+. These generators
are subject to the following relations:

D(v) E=
1
v

D(v)+E (6)

D(v$) D(v)=
vD(v$)&v$D(v)

v&v$
v$>v (7)
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D(v) |V ) =
v

v+;&1
|V ) (8)

(W | E=
1
:

(W | (9)

We also need to show how this continuously parameterized algebra is
derived in the MPA formalism. This is done in the Appendix. The hopping
rates v are taken from a general distribution _(v), with support [v1 , �).
That is, v1 is the smallest hopping rate in the ensemble. Note that this
ensemble refers to the particles waiting to enter the system, or the ensemble
of particles moving in the system, if there were no interactions between the
particles. For this reason we call v the intrinsic hopping rate or average
velocity of a particle.

The process described by this algebra is one in which each particle of
velocity v arrives at the left end with rate :(v) :=:v, (i.e., the input current
is _(v) :v), hops to its right neighboring empty site with rate v and leaves
the system at the right end with rate ;(v)=;+v&1. If this particle
encounters on its way a site occupied by a particle of intrinsic velocity v$
with v$<v, it will overtake it with rate v&v$, otherwise it stops. For all the
extraction rates ;(v) to be positive we also require that ;�1&v1 . The unit
of time is set so that the average hopping rate is unity, i.e., � v_(v) dv=1.
Thus the parameters : and ; are respectively the total injection rate and
the average extraction rate of the particles respectively. Note that although
the multiplicative dependence of the injection rate :(v) on v is rather
natural, this is not the case for the extraction rate ;(v) the form of which
is dictated only by our demand to solve the system through the MPA rela-
tions (6-9). Note also that all the elementary processes are stochastic, i.e.,
in a time interval dt, a particle of velocity v present in a given site, hops
to the right empty site with probability v dt, and does not move with prob-
ability 1&v dt.

The model we consider depends on two boundary parameters : and ;
and on the distribution function _(v). All our arguments below are also
valid for a discrete distribution, for which _(v) :=(1�p) �i $(v&vi ).

The main motivation for pursuing this problem is to see how the
phase structure of the one-species ASEP (hereafter denoted by 1-ASEP) is
modified, when we have particles with a variety of hopping rates and espe-
cially when particles can overtake each other. Do we still have the phases of
low-density, high-density and maximum Currents, present in the 1-ASEP,
or is it changed in an essential way? How does the variety of hopping rates
in the bulk or their probability distribution enter the picture and what role
does this distribution play in the phase structure of the system? How the
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absence of particle-hole symmetry in this model is reflected in the phase
diagram?

We will go through these questions by providing an exact solution of
this problem, and will obtain a generalization of the phase diagram of the
1-ASEP.

As far as we consider only the mean field line :+;=1,(22) one dimen-
sional representations of the algebra (6-9) give an exact solution. However
to uncover the important role of fluctuations, we should explore the full
:&; plane and for this we should use the infinite dimensional representa-
tion. What we will do is to calculate exactly the generating function for
partition functions of systems with different sizes and by carrying out an
analysis of its singularities, determine the currents and the different phases
of the system.

Fig. 2. Phase diagram for multi-species ASEP when l[_]<0.
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The phase structure depends on the values of :, ;, and on the charac-
teristics of the distribution function.

Main Results

v To every distribution function _(v) of hopping rates, we can assign
a real number l[_], defined in (47), which essentially depends on the
behavior of _(v) for small hopping rates (i.e., if _(v1)=0 or not and if yes
how slowly it approaches this value). The parameter lc=0 is special in the
sense that for all distribution functions with l[_]<0, the phase diagram
of the multi-species ASEP is almost the same as the phase diagram of
1-ASEP, that is, in the :&; plane we have three regions of low density,
high density and maximum current phases. The value of the maximum
current and the shape of the coexistence curves between different phases

Fig. 3. Two phase diagram for the multi-species ASEP for different distribution of hopping
rates. In both cases l[_]<0.
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depend on the distribution function (see Figs. 2 and 3). We also obtain the
average density of all types of particles in all three phases.

v If on the other hand l[_]�0, then the phase diagram consists of
only two phases, namely the low density and the maximum current phase.
The extraction rate ; does not have any effect on the system and only the
injection rate : determines which phase will develop in the system (Fig. 4).
We also obtain the average density of all types of particles in both phases.

Thus the general shape of the phase diagram is controlled by three
parameters. The two control parameters : and ; represent the effect of
boundaries and the third parameter l[_], takes into account the distribu-
tion function of hopping rates.

This paper is organized as follows: In Section 2, we introduce the
necessary preliminary material from ref. 22 and set our notations and

Fig. 4. Phase diagram of the multi-species ASEP when l[_]>0.
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conventions. In Section 3 the generating functions for the currents and
average density of particles of each species are introduced and the former
one is calculated exactly. In Section 4 the total current is calculated in
terms of which the different phases of the system are determined. Section 5
is devoted to the calculation of the generating function for the average den-
sities and the calculation of latter quantities. In Section 6 we discuss two
special cases, namely the 1-ASEP where we reproduce the already known
results, and the case when one of the hopping rates is much smaller than
the others. We conclude the paper with a discussion in Section 7.

2. SOME ALGEBRAIC PRELIMINARIES

To make the present paper self-contained, we quote the basic definitions
and theorems from ref. 22, to which the reader can refer to, for further details
and proofs.

The algebra (6-9) has only one or infinite dimensional representations.
We write the infinite dimensional representation in a convenient basis
consisting of vectors |0) , |1) , |2) ,..., with the following actions:

E |n)=|n+1) (10)

D(v) |n)=v&n |0) +v&n+1 |1)+v&n+2 |2)

+ } } } +v&1 |n&1)+|n) (11)

We also have:

|V ) = :
�

n=0

(1&;)n |n) (12)

(W |= :
�

n=0

(:)&n (n| (13)

The basis [(n|] is the dual of the basis [ |n)], i.e., (n | m)=$n, m .
The operator C is defined as

C :=E+| _(v) D(v) dv (14)

whose action on the basis vectors is calculated to be

C |n) = :
n+1

k=0 �
1

vn&k� |k) (15)
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where (1�vk) is the average of the inverse k th power of the hopping rates.
((1�vk)=(1�p) � p

j=1 1�(vj )
k for discrete distributions and (1�vk) =� dv

_(v)(1�vk) for continuous distributions). The explicit matrix form of C is:

C=

1 �1
v� � 1

v2� � 1
v3� � 1

v4� } } }

1 1 �1
v� � 1

v2� � 1
v3� } } }

0 1 1 �1
v� � 1

v2� } } }

0 0 1 1 �1
v� } } }

0 0 0 1 1 } } }

b b b b b } } }

Clearly direct evaluation of the N th power of this matrix is a formidable
task. In the one species case where (1�vk) =1, \k, one can go to a new
basis [ |n)$ :=(E&1)n |0)] in which the matrix C becomes tri-diagonal
with the simple form Cn, m=2$n, m+$n, m+1+$n, m&1 . This Hermitian
matrix can then be either easily diagonalized(17) or else, yields simple recur-
sion relations which can be solved by an analogy with the master equation
of a random walk in the presence of an absorbing wall.(17) Due to the
complicated form of the matrix C, none of the above strategies work in the
present case. The same is true with the method of repeated application of
the algebraic relations (6-9) and calculating directly the matrix element
(W | CN |V ) .(17)

There is however one basis in which a manageable recursion relation
can be found, namely the coherent basis defined as follows:

|u) = :
�

n=0

un |n) (17)

(u|= :
�

n=0

un (n| (18)

Note a slight difference of our notation with that of ref. 22 in the symbol
for (u|, where this state would have been denoted by (u&1|. These states
have the following properties:
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(u| E=u (u| (19)

D(v) |u) =
v

v&u
|u) (20)

(| | u) =
1

1&u|
for |u||<1 (21)

�
c

du
2?iu

|u)(u&1|=I (22)

where I is the identity operator and c is any contour encircling the origin.

Remark. In calculation of matrix elements of operators between
two states (a| and |b) , one can insert any numbers of unit operators in the
form of (22) with integration variables u1 , u2 ,... from left to right, provided
that |1�a|>|u1|>|u2|> } } } >|b|. This is due to the restriction (21). The
results of such calculations are then valid only for |ab|<1 and must be
analytically continued to larger domains. From the definition of C and
(19)�(21) one obtains

(u| C |w)=\u+| dv _(v)
1

1&w�v +\
1

1&uw +=: (u+ g(w)) \ 1
1&uw+ (23)

where the second equality defines the function g(w), a shorthand and useful
notation for which is

g(w)=� 1
1&w�v� (24)

Here the average is taken with respect to the probability distribution of
hopping rates, _(v).

3. THE GENERATING FUNCTIONS FOR CURRENT AND
AVERAGE DENSITIES

The total current for a system consisting of N sites has been found to
be(22)

J=
(a| CN&1 |b)

(a| C N |b)
(25)
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where (a| and |b) are coherent states and for convenience, we have
denoted 1&; by b, and :&1 by a. The current density of particles of
velocity v is given by

J(v)=v_(v) J (26)

In the thermodynamic limit N � �, there is a simple way to evaluate (25).
Define a generating function

f (s; a, b) := :
�

N=0

sN(a| CN |b) (27)

The convergence radius of this formal series, R, is precisely what we need.
In fact

R= lim
N � �

(a| CN&1 |b)
(a| CN |b)

(28)

Remark. The function f (s; a, b) has a Taylor-series expansion in
terms of (non-negative) powers of its three arguments, which means that
there is a region containing the origin of the space C3, where f is analytic.
This is easily seen by noting that CN can in principle be expanded in terms
of integrals of monomials of the form EmD(v1) D(v2) } } } D(vn) and using
the relations D(v) |b) =(v�(v&b)) |b) and (a| E=a (a|.

The radius of convergence is also the absolute value of the nearest
singularity of f to the origin. We also know that all of the coefficients of
the Taylor expansion of f in terms of s are positive. This assures that the
nearest singularity of f lies in fact on positive real half-line. That is, the
current at the thermodynamic limit is real and positive, as it should be.
A similar method works for the average density of particles of each species
as well. The global density of particles of type i is

\(v)=
_(v)

N
:
N

k=1

(a| Ck&1D(v) CN&k |b)
(a| CN |b)

(29)

To evaluate this, we use fugacities z0 and z(v) to define an operator C[z]
as

C[z] :=z0E+| z(v) _(v) D(v) dv (30)
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Note that we have C[1]=C, where by 1 we mean the fugacities z0=z(v)
=1. It is straightforward to see that

\(v)=
z(v)
N

$
$z(v)

ln(a| CN [z] |b) |
z=1

(31)

Once again, the right-hand of this can be expressed is terms of the radius
of convergence R(z) of a formal series f (z; s, a, b) defined as:

f (z; s; a, b) := :
�

N=0

sN (a| CN [z] |b) (32)

Using an equivalent definition for the radius of convergence as R(z) :=
limN � �(((a| CN[z] |b) )&1�N, we have:

\(v)=z(v)
$

$z(v)
ln

1
R(z) } z=1

(33)

So the key step in obtaining the physical quantities is to calculate the func-
tions (27) and (32), which we call the generating functions for currents and
average densities respectively.

3.1. Exact Calculation of the Generating Function f(s; a, b)

First we use (23) to obtain a recursion relation for (a| CN |b):

(a| CN+1 |b)=�
du

2?iu
(a| CN |u) �1

u } C |b)

=�
du

2?iu
(a| CN |u) _ g(b)+

1
u &

1
1&b�u

(34)

where the function g has been defined in (24), i.e., g(b)=(v�(v&b)).
Multiplying both sides of (34) by sN and summing over N from zero to
infinity, we arrive at

1
s

[ f (s; a, b)& f (0; a, b)]=�
du

2?iu
f (s; a, u) _ g(b)+

1
u&

1
1&b�u

(35)

The generating function, which we calculate in this way, will be restricted
to the domain |ab|<1. After calculating it for this region of parameters, we
will analytically continue it for other values of parameters as well. Since
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|1�a|>|u|>|b| the integrand in the right-hand side of (35) has just two
poles inside the integration contour; one at u=0 and the other at u=b.
This is true provided f (s; a, u) itself is analytic for u inside the integration
contour. However, we know that for small values of its arguments the func-
tion f (s; a, u) is analytic (see the remark after Eq. (28)). The result of this
calculation will be valid for small values of the arguments of the generating
function. One can then use analytic continuation to obtain more general
results. Knowing the non-analytic structure of the integrand, one can use
Cauchy's theorem to evaluate the right-hand side of (35):

1
s

[ f (s; a, b)& f (0; a, b)]=&
f (s; a, 0)

b
+_1

b
+ g(b)& f (s; a, b) (36)

Solution of this equation for f (s; a, b) yields

f (s; a, b)=
sf (s; a, 0)&bf (0; a, b)
b[s[ g(b)+1�b]&1]

(37)

Note that from (27)

f (0; a, b)=(a | b) =
1

1&ab
(38)

and g(b)#(1�(1&b�v)) is a function which can be determined once the
data of the problem (i.e., the distribution function P(v)) are given. Equa-
tion (37) then suggests that f (s; a, b) is known, provided a two-variable
restriction of it, namely f (s; a, 0) is known. Equation (37) contains even
more information. To see this, notice that from (37) it seems that there is
a pole for s at

s0=S(b) :=
1

g(b)+1�b
(39)

From the definition of g(b), it is seen that, as b tends to zero, g(b) tends
to unity. So, for small values of b, S(b) behaves like b:

S(b)tb+O(b2), as b � 0 (40)

But this means that as b tends zero, the radius of convergence for the
variable s tends to zero, and this can not be the case, due to the remark
after (27). To avoid this apparent paradox, it must be true that s=S(b)
must not really be a pole, at least for small values of b. This means that
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the numerator in (37) must also vanish for s=S(b). For this to be the case,
we should have

S(b) f [S(b); a, 0]=bf (0; a, b)=
b

1&ab
(41)

This equation allows us to determine the function f (s; a, 0) and hence via
(37), the complete generating function. Denoting the inverse function of S
by B:

S[B(s)]=s (42)

we find

f (s; a, 0)=
1
s

B(s)
1&aB(s)

(43)

Note, however, that S is not in general one to one and in different domains
of its arguments it has different inverses. In fact we will show later that S
is at most a two-to-one function with the property S(0)=0. By the inverse
B we mean the one that tends to zero as its argument tends to zero:

lim
s � 0

B(s)=0 (44)

Inserting (43) in (37), and using (41), we find

f (s; a, b)=

B(s)
1&aB(s)

&
b

1&ab

b _ s
S(b)

&1&
(45)

This is the final form of the generating function. For any given probability
distribution of hopping rates, one can obtain S(b) and hence B(s) from
(24), and (39), which after insertion into (45) gives the complete generating
function. What we will do in the next sections is to carry out an analysis
of the singularity structure of this function and determine the currents and
hence the different phases of our multi-species stochastic process. Our
results and analysis depend on the general behavior of the functions S(b)
and B(s) which in turn depend on the distribution of hopping rates.
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4. THE TOTAL CURRENT AND THE PHASE STRUCTURE OF
THE SYSTEM

4.1. Properties of the Function S

As it was seen in the previous section, to investigate the properties of
the system, one must know the behavior of the function S. We have

1
S(b)

=
1
b

+ g(b) (46)

from which we find

d 2

db2 S &1(b)=
2
b3+� 2v

(v&b)3�>0

Thus S&1(b) is a concave function. Combination of this with the fact
that this function is positive for b # (0, v1) and tends to infinity as b � 0,
implies that S &1 has at most one minimum in (0, v1). Hence S is a positive
function in (0, v1) and has at most one maximum in this domain. Note also
that S(0)=0.

The phase structure depends crucially on whether S attains a local
maximum in this domain (i.e., (0, v1)) or not. This is easily checked from
the sign of S$(v&

1 )=1�v2
1&(v�(v&v1)2). This quantity is determined only

by the probability distribution of hopping rates and this is where this function
plays its essential role. To emphasize the dependence on the distribution
function we denote this quantity by l[_]

l[_] :=
1
v2

1

&� v
(v&v1)2� (47)

As we will see if l[_]<0 there are three regions in the phase diagram
namely the high-density, the low-density and the maximum current phases.
On the other hand if l[_]�0, the high density phase disappears and only
the low-density and the maximum current phases remain. We call these
two regimes, the 3-phase and 2-phase regimes respectively. Qualitatively
the transition from the 3-phase to the 2-phase regime is accomplished by
shifting the distribution function from low speeds to higher speeds. As an
example if _(v1){0 (i.e., if there is a significant relative probability of
injecting slow particles to the system), then it is clear that l[_]=&�,
which means that we are in the 3-phase regime. The case of discrete values
of particle velocities is a special case in this category. However if _(v)
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approaches zero slowly enough as v approaches v1 , (i.e., if the chance of
entrance of slow cars is small), then we will be in the two-phase regime.
The exact criterion is given by the parameter l[_c]=0.

In the sequel we will need one further property of S. From its definition
it is seen that S as a function of the complex variable b has a singularity at
b=v1 . If the distribution is discrete, this singularity is a simple pole. If the
distribution is continuous, S has a branch cut on a segment of the real line
beginning from b=v1 to +�. To see this we use 1�x\i== pf (1�x)�i?$(x)
to obtain

1
S(b+i=)

&
1

S(b&i=)
=2?ib_(b)

4.2. The Singularities of the Generating Function f(s; a, b)

In order to determine the phases we have to determine the singularities
of the generating function. For the case l[_]<0 where S has a maximum
sm at bm # (0, v1) (Fig. 5), we define two right inverses for S.

Fig. 5. The generic form of the function S(b) that produces the three phase regime.
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One is the function B defined in the previous section. It is defined in
the interval [0, sm], and has the following properties.

{S[B(s)]=s,
B[S(b)]=b,

0�s�sm

0�b�bm
(48)

The other function is B� , defined in [S(v1), sm], with the following properties

{S[B� (s)]=s,
B� [S(b)]=b,

S(v1)�s�sm

bm�b�v1

(49)

The graphs of these functions are shown in Fig. 6.
We now consider the generating function as given in (45). The singu-

larities of f as a function of s may be of one of following types. The first
singularity denoted be s: may arise from vanishing of (1&aB(s)) in the
numerator. That is

B(s:)=
1
a

=: (50)

or

s:=S(:) (51)

However (50) has a real positive solution for s if and only if :=(1�a)<bm

(see Fig. 6). Thus s: is a singularity provided that :<bm .
The second singularity which we denote by s; may arise from vanishing

of the denominator, i.e.,

s;=S(b)=S(1&;) (52)

However for b<bm , according to (48) the numerator vanishes as well, and
s; is no longer a singularity, which means that s; is a singularity only when
b>bm (or ;<1&bm).

Finally, B itself becomes singular at s=sm . Notice that sm is greater
than s: and s; both, provided these latter two exist (see Fig. 5).

In the next subsection we use these information to determine the
phases.

4.3. The Phase Structure for l<0

In this case, the generating function has three singular points, namely
s: , s; and sm , each phase (the analytic expression of the current) is deter-
mined according to which of these singular points are the smallest.
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Fig. 6. The functions B(s) and B� (s).

v The low-density phase (s:<s; , sm). In this phase which develops
when :<bm and S(:)<S(1&;), we have:

J=S(:) (53)

v The high-density phase (s;<s: , sm). In this phase which develops
when ;<1&bm and S(1&;)>S(:), the total current is given by

J=S(1&;) (54)
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and finally

v The maximum current phase (sm is the only singularity). This
phase exists for the rectangular area :>bm and ;>1&bm . The current is
given by

J=sm (55)

Summarizing we have:

S(:), :<bm , and S(:)<S(1&;)

J={S(;), ;<1&bm , and S(1&;)<S(:) (56)

sm=S(bm), :>bm , and ;>1&bm

The phase diagram is shown in Fig. 2. The coexistence curve between the
low and high-density phases is obtained by the nontrivial solution of the
equation S(:)=S(1&;). A parametric representation of this curve is:

:=B(s)

{ S(v1)<s<sm (57)

;=1&B� (s)

We see that the main features of the 1-ASEP diagram is present. In this
regime the multi-species nature of the process has only a minor effect. We
will see that this exact result is also substantiated by a domain wall analysis
in accordance with the analysis of ref. 32.

4.4. The Phase Structure for l�0

In this case the generating function has only two singular points,
namely s: and sm=S(v1). Consequently we have only two phases (Fig. 4).

v The low density phase in which

J=S(:) (58)

and

v The maximum current phase in which

J=S(v1) (59)

In summary

J={S(:),
S(v1),

:�v1

:>v1

(60)
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The high-density phase has been shrunk and lost, and the injection
parameter determines which phase we have. This is due to the fact that in
this regime the current density diagram is monotonically increasing (see
Section 7) and hence according to the domain wall analysis, only the low
density and the maximum current phases are expected to exist. Moreover
in the maximum current phase everything is controlled by the lowest-speed
particles.

The disappearance of the maximum density phase has an interesting
implication, for the occurrence of traffic jams and its dependence on the
bulk parameters beside the boundary ones. From the above analysis one
can conclude that the maximum density or traffic jam occurs only when
there is a critical probability of having particles or cars of slow velocities,
the exact criteria is given by the parameter l defined above.

5. EXACT CALCULATION OF THE GENERATING FUNCTION
f(z; s; a, b) AND THE AVERAGE DENSITIES OF
EACH SPECIES

Using the same calculation, which led to (35), we obtain

1
s

[ f (z; s; a, b)& f (0; a, b)]=�
du

2?iu
f (z; s; a, u) _ g(z; b)+

z0

u &
1

1&b�u
(61)

and from that we arrive at an expression analogous to (37)

f (z; s; a, b)=
z0sf (z; s; a, 0)&bf (z; 0; a, b)

b[s[ g(z; b)+z0 �b]&1]
(62)

where

g(z; b) :=� z
1&b�v�=| dv _(v)

z(v)
1&b�v

(63)

From (62), by a reasoning exactly the same as that of Section 2, we arrive
at

f (z; s; a, b)=

B(z; s)
1&aB(z; s)

&
b

1&ab

b _ s
S(z; b)

&1&
(64)
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where

1
S(z; b)

:=
z0

b
+ g(z; b) (65)

and B(z; s) is that right-inverse of S(z; b) which tends to zero as s � 0.
According to (33), or its analogue for the case of continuous distribu-

tion, the average density of particles of speeds between v and v+dv.

\(v)=z(v)
$

$z(v)
ln

1
R(z) } z=1

(66)

Knowing the smallest singularity of f (z; s; a, b) is sufficient to obtain the
average densities \(v). Once again, we can distinguish three phases: the
low-density phase, the high-density phase, and the maximum-current phase.
In the low-density phase R(z)=S(z, :). Thus \(v) is obtained from (63),
(65) and (66) as follows:

\(v)=z(v)
$

$z(v)
ln _z0

:
+| dv _(v)

z(v)
1&:�v&} z=1

=
_(v) S(:)
1&:�v

(67)

The expression for the high-density phase is similar and reads

\(v)=
_(v) S(1&;)
1&(1&;)�v

(68)

The treatment of the maximum current phase however requires more care.
In the two-phase regime (i.e., l�0), where the function S does not attain
any maximum in [0, v1], the maximum current is S(v1), the situation is the
same as above, and we have

\(v)=
_(v) S(v1)
1&v1 �v

(69)

In the 3-phase regime (i.e., l<0) however, the maximum current is S(bm),
where bm itself depends on z. Therefore,

$
$z(v)

1
S[z, bm(z)] } z=1

=
$

$z(v)
1

S(z, bm) } z=1

+
$bm(z)
$z(v) } z=1

�
�b

1
S(b) }b=bm

(70)
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The second term in the right-hand side is, however, zero, since 1�S is mini-
mum at bm . So we arrive at the expression

\(v)=
_(v) S(bm)
1&bm �v

(71)

To summarize, we have

\(v)=
_(v) S(x)

1&x�v
(72)

where

x={
:,
1&;,
bm ,
v1 ,

low-density phase
high-density phase
maximum current phase in the three-phase system
maximum current phase in the two-phase system

(73)

The average density of vacant sites \0 can also be obtained either by using
the formula \0=z0(���zi ) ln(1�R(z))| z=1 or by using the sum rule

\0+| dv \(v)=1 (74)

From (74), one obtains for each phase determined by the parameter x
defined in (73)

\0=1&| dv
_(v) S(x)

1&x�v
=1&S(x) g(x) (75)

where S(x)=S(1, x) and g(x)= g(1, x). After using (65), this gives

\0=1&S(x) \ 1
S(x)

&
1
x+=

S(x)
x

(76)

6. EXAMPLES

6.1. The Single Species ASEP

In this case _(v)=$(v&1). All we need to know to treat this special
case is the function S(b) as given in Eq. (46). From (39) we find

S(b)=
1

b(1&b)
(77)
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with l=0, bm= 1
2 , and sm= 1

4 . Thus according to (56) we have the follow-
ing phases in accordance with previous results:

:(1&:) :<;, and :< 1
2

J={;(1&;) :> 1
2 , and ;< 1

2 (78)
1
4 :� 1

2 , and ;� 1
2

6.2. Continuous Distributions; Concrete Examples of the
Disappearance of the Maximum Density Phase

In this section we consider two classes of distribution functions to see
concretely the transition between the two and three phase regimes. Both of
the distributions must be such that they vanish at v1 , otherwise as we have
already remarked l=&� and we have three phases. For convenience we
also rescale the time so that the average velocity is no longer equal to
unity. Correspondingly the expression (47) for l[_] is replaced by

l[_]=\ v�
v1+

2

&� vv�
v&v2

1� (79)

where v� is the average hopping rate.
The first distribution that we study has a finite support.

_(v)=Am(v&v1)m, m>0, v1�v�v2

This kind of distribution has also been considered in a related context by
Evans.(24) Note that m need not be an integer, and Am is a normalization
constant to be determined shortly. It is convenient to evalute the following
integrals:

Ik :=|
v2

v1

(v&v1)k dv={
+� k�&1

(80)
I� k :=

(v2&v1)k+1

k+1
&1<k

Obviously Am=1�I� m . Simple calculations also yeild:

v� =v1+
m+1
m+2

(v2&v1) (81)

and

l[_]=\ v�
v1+

2

&
v�

I� m
(Im&1+v1Im&2) (82)
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from which we find

l[_]={
&� 0<m�1

l \v2

v1

, m+=\ v�
v1+

2

&(m+1) v� \ 1
m(v2&v1)

+
v1

(m&1)(v2&v1)2+
1<m

(83)

The sign of the parameter l(v1 , v2 , m) determines if the maximum density
phase exists or not. In an extreme case the analysis of this quantity is quite
simple. For very large m, we find after inserting (81) in (83)

l \x :=
v2

v1

, m+=x2 \1&
1

x2&1+&
2
m

x(x&1)+O(m&2) (84)

which implies that to zeroth order, if x>2 (i.e., v2>2v1), there is no maxi-
mum-density-phase. To first order the above condition is modified to
v2>2v1(1+1�m).

We now consider another distribution with infinite support.

_(v)=Am(v&v1)m e&(v&v1)�*, m>0, v1�v

The analysis is similar to the previous case. We have

Jk :=|
�

v1

(v&v1)k e&(v&v1)�* dv={+�
J� k :=*k+11 (k+1)

k�&1
&1<k

(85)

from which we find

v� =v1+m* (86)

l[_]=\ v�
v1+

2

&
v�

J� m
(Jm&1+v1 Jm&2) (87)

or

l[_]={
&� 0<m�1

l \x :=
m*
v1

, m+ 1<m
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where

l(x, m)=x(2+x)&
1
x2 \m+(2m&1) x

m&1 + (89)

Again to zeroth order of 1�m, we find

l=\x&
1
x+\x+

1
x

+2+ (90)

which implies that when *m�v1>1, the high-density-phase disappears.

6.3. The p-Species ASEP, with a Hopping Rate Much Lower
Than the Others

The case of a fixed or moving impurity has been studied in many pre-
vious works as for example in refs. 29�31. In the present framework we can
consider a new case where the number of impurities is not one or even
fixed. That is we allow very slow particles to have a chance of entering into
and leaving the system. That is we take

_(v)=
1
p

:
p

i=1

$(v&vi )

and let one of the particles has a speed much lower than the rest: that is:
b<v1<<<v2<v3< } } } <vp . Then with the approximation 1&(b�vi )r1,
for i=2, 3,..., p, one can write:

g(b)#
1
p

:
p

i=1

1
1&(b�vi )

r
1
p \

1
1&(b�v1)

+ p&1+ (91)

from which one obtains:

S&1(b)#
1
b

+ g(b)=
b+1

b
+

b
p(v1&b)

(92)

For this function we have:

bm=
v1

1+- v1�p
and sm=

v1

1+v1+2 - v1�p
(93)

Besides v1 , : and ;, only the number of species plays a role here.
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Fig. 7. Phase diagram of the p-species ASEP when one of the hopping rates is much smaller
than the others.

The phase diagram is shown in Fig. 7.
The following features are readily observed. Compared to the other

two phases, the size of the low density region is very small, as we expect
on physical ground. Only for very small injection rate : and for very large
extraction rate ; can this phase exist in the system. Even in the maximal
current phase the current which is given by sm is seen to be small and
limited by the speed of the lowest particles. For fixed :, ;, and v1 , as the
number of species p increases, the value of bm approaches v1 and hence the
high density phase begins to shrink, leaving only two phases in the system.

It is instructive to calculate the relative numbers of particles of dif-
ferent types including holes in each of the above phases. From (72) we find

\(vi )
\(v1)

=
1&(x�v1)
1&(x�vi )

(94)

where in each phase x is given as in (73). Inserting the relevant values of
x and in the approximation b�vi<<1 \i�2, we find:

1&(:�v1)
1&(:�vi )

, low-density phase

\(vi )
\(v1)

={1&
b
v1

, high-density phase (95)

1&
bm

v1

, maximal current phase

In the low density region where : takes values from 0 to bm , this ratio
takes values from 1 to 1&(bm�v1)=1&[1�(1+- v1 �p )]. Thus in this
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region almost all types of particles are present in the system. In the high
density region this ratio is at most equal to 1&[1�(1+- v1 �p )] which is
determined by the interplay of the lowest speed and the number of species.
For large p, it is indeed a very small value, indicating that the system is
almost filled by the lowest particles.

This ratio takes its maximum value in the entire maximal current
phase. One can also obtain the ratio of the density of lowest speed particles
to that of the holes. From (72) and (76) one obtains

1
p

:
1&(:�v1)

,

\(v1)
\0

={ 1
p

b
1&(b�v1)

(96)

1
p

bm

1&(bm �v1)

where from top to bottom we have listed the low density, the high density
and the maximal current phases. Again we can find the limiting values of
this ratio, to see how crowded the system is, in each phase. It is simple to
see that the ratio ranges from 0 to - v1 �p in the low density, and from
- v1 �p to infinity, in the high density and is fixed at - v1 �p in the maximal
current phase.

With a little more effort, starting from (92), the coexistence line
between the low-density and the high-density phases is found to be given
by:

;=:+1&
pv2

1+:2(v1& p)
(:+ p) v1&:p

(97)

7. DISCUSSION

The results that we have obtained on the phases and currents are
exact. We can get a feeling for these results, based on the intuitive
arguments of domain wall dynamics.(4, 33, 29, 16, 32) What we will do in this
section is to formally adopt the analysis of ref. 32 and redrive our exact
results. The essential result of ref. 32 is that for all single species processes
which have single peak current density relation, the phase diagram of the
ASEP is generic, that is the possible phases are the low density, the high
density and the maximal current phases. Roughly speaking one expects
that for : small and ; large, the low density phase denoted schematically
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by (000000000), prevails in the system, and for : large and ; small, the
high density phase denoted by (11111111) prevails. However when there is
no restriction on the injection and extraction rates of the particles, that is
for : and ; large, the current reaches its maximum value allowed in the
current density diagram, this new phase being called the maximal current
phases and denoted by (mmmmmmmm). The exact shape of the phase
diagram and the coexistence lines are obtained by studying the dynamics
of a supposedly formed domain wall at sufficiently late times between any
pair of these phases under appropriate conditions. For example when : is
small and ; is large, the late time configuration is supposed to be
(000000111111). It is also assumed that deep into each of the two segments
we have a product measure with constant density. This assumption is well-
founded(4, 33, 29, 16) by numerical, mean field and exact solutions. The
velocity of such a domain wall is then given by the formula

V=
J0&J1

\0&\1

(98)

where J0 and \0 (resp. J1 and \1) are the current and density to the far left
(resp. right) of the domain wall. The sign of this velocity determines the
prevailing phase and setting this velocity equal to zero determines the
coexistence line. In the latter case the two phases coexist due to dominance
of fluctuations in the rms position of the domain wall. For the currents and
the densities in (98) one uses the mean field values. For the maximal phase,
one uses the density which maximizes the current in the current density
diagram.

The above analysis can be readily applied to the multi-species case.
On the assumption that the coarse grained bulk current is given by the
uncorrelated Bernoulli measure, (34) we can use the one-parameter family of
one dimensional representations for the bulk relations in (6-7) to obtain
ref. 22

E=
1
b

D(v)=
v

v&b
(99)

and consequently the following forms for current and total density:

J(b)=C&1=\1
b

+� v
v&b�+

&1

(100)

\(b)=� v
v&b�\

1
b

+� v
v&b�+

&1

(101)
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Note that the right hand side of (100) is exactly the function S(b) defined
in Eq. (39). However, before using Eq. (98), we need to determine the free
parameter b and its range, in the Bernoulli measure for each phase. For the
maximum current phase the parameter is obviously bm which maximizes
J(b). This is exactly the parameter, which has been defined in Section 4.1.
For the other two boundary-controlled phases, the parameter b should be
fixed by compatibility with the boundary conditions of (8-9), according to
which a product measure coupled to a left reservoir injecting particles at
rate : should have b=: and a product measure coupled to a right reser-
voir extracting particles at rate ; should have b=1&;. Instead of using
this type of argument which is based on MPA relations one can follow the
more general argument suggested in ref. 16, to match the boundary rates
with the bulk densities.

Note also that for the low density phase b<bm and for the high den-
sity phase b>bm . Thus we have J0=J(b=:), J1=J(b=1&;) and
Jm=J(bm). Equating the currents we obtain exactly the phase structure
previously obtained by exact solution. Moreover the size of the maximum
density region in the phase diagram depends on the value v1&bm (see
Fig. 5). When v1&bm approaches zero, the size of this region shrinks and
we remain only with two phases. This is again in accord with our exact
solution.

To conform completely to the picture advocated in ref. 32 we should
have discussed various phases according to the behavior of the function
J(\) and not the function J(b). However in our case the qualitative
behavior of these two functions resembles each other. In fact it is seen from
(101)�(102) that \ is a monotonically increasing function of b, which
attains its maximum \1 at b=v1 . Moreover J(\=0)=0, J$(\=0)=1, and
finally(23) J is a convex function of \. To see if J(\) attains a local maxi-
mum in its domain of definition [0, \1] or not we evaluate dJ�d\ at \=\1

and find

dJ
d\

(\1)=

dJ
db

(v1)

d\
db

(v1)
=

1
v2

1

&� v
v&v1�

1
v2

1 �
v

v&v1�
(102)

Thus here also the value of the parameter l determines the answer to the
above question.

We should stress that the above arguments due to their qualitative
nature Is not by no means a substitute for exact solutions. However it is
remarkable that in view of the crude approximations involved, they can
predict exact results.
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APPENDIX

For our presentation to be consistent, we have to show how the
infinite dimensional algebra (6-9) is derived in the MPA formalism. This
can be simply done by a slight modification of the relations in ref. 22. In
the general case the Hilbert space of each site of the lattice which we
denote by h is generated by a discrete state |0) (when the site is empty) and
a continuous set of states |v), v # (0, �) (when the site is occupied by a
particle of intrinsic velocity v). We denote these states by different symbols
to avoid confusion with the states of the representations of the algebra. The
states are normalized as:

(0 | 0)=1 (0 | v)=(v | 0)=0 (v | v$)=$(v&v$) (103)

The Hamiltonian is

H=h1+ :
k=N&1

k=1

hB
k, k+1+hN (104)

where hB is given by

hB=&| v( |0v)(v0|&|v0)(v0| ) dv

&||
v$>v

(v$&v)( |vv$)(v$v|&|v$v)(v$v| ) dv dv$ (105)

The boundary Hamiltonians h1 and hN are:

h1=&| :_(v) v( |v)(0|&|0)(0| ) dv (106)

hN=&| (v+;&1)( |0)(v|&|v)(v| ) dv (107)

Note that the distribution _(v) only enters h1 , which points to the fact that
the distribution _(v) refers to the particles injected to the system.

Inserting these Hamiltonians in the standard formulas of the MPA,
i.e.,

hBA�A=X�A&A�X (W | h1A+X=0 hNA&X |V )=0

(108)
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with the following form of the auxiliary vectors A and X

A=E |0)+| _(v) D(v) |v) dv

(109)

X= &|0)+| _(v) v |v) dv

leads to the algebraic relations (6-9). Note that A and X are operator
valued vectors in the Hilbert space of one site of the lattice, as they should
be in the MPA formalism.

One can also derive relations for the currents and densities by
generalizing the corresponding relations in ref. 22. The results are:

J(v)=v_(v)
(W | CN&1 |V )

(W | CN |V )
(110)

\(v)=_(v)
(W | Ck&1D(v) CN&k |V )

(W | CN |V )
(111)
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